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We study the angular momentum of phonons in a magnetic crystal. In the presence of a spin-phonon
interaction, we obtain a nonzero angular momentum of phonons, which is an odd function of
magnetization. At zero temperature, a phonon has a zero-point angular momentum in addition to a
zero-point energy. With increasing temperature, the total phonon angular momentum diminishes and
approaches zero in the classical limit. The nonzero phonon angular momentum can have a significant
impact on the Einstein–de Haas effect. To obtain the change of angular momentum of electrons, the change
of the phonon angular momentum needs to be subtracted from the opposite change of the lattice angular
momentum. Furthermore, the finding of the phonon angular momentum gives a potential method to study
the spin-phonon interaction. Possible experiments on phonon angular momentum are also discussed.
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The Einstein–de Haas effect [1,2], a phenomenon of
mechanical rotation induced by a magnetization change,
was originally designed to prove the existence of Ampere’s
molecular currents, but subsequent experiments [3] showed
that the magnetic moment of an atom is dominated by spin
while contribution from orbital motion to the magnetic
moment is almost absent. The Einstein–de Haas experiment
together with the Barnett experiment [4,5] (a change of
magnetization resulting from a mechanical rotation) has
provided an effective method of measuring the gyromag-
netic ratio for various materials [6–8]. The accuracy of
gyromagnetic ratio is crucial to determining of orbital and
spin contribution in total magnetization [9–15].
Because of conservation of total angular momentum of

the whole system in the Einstein–de Haas effect, the change
of angular momentum of electrons (including both spin and
orbital parts) is taken to be equal in magnitude but opposite
in sign to the change of lattice angular momentum, which
corresponds to mechanical rotation. However, the mechani-
cal rotation only reflects angular momentum of the rigid-
body lattice where atoms are assumed in the corresponding
equilibrium positions, while phonons, which come from
atomic vibrations around equilibrium positions, are
assumed to have no macroscopic angular momentum.
Recently, a remarkable phenomenon of the phonon Hall
effect was observed in a paramagnetic insulator [16,17],
which is indeed a surprise since phonons as neutral
quasiparticles cannot directly couple to magnetic field
via Lorentz force. The following theoretical studies
[18,19] showed that through Raman spin-phonon interac-
tion the magnetic field can have an effective force to distort
phonon transport, and thus drive a circulating heat flow
[20]. Therefore, a natural question arises: can such circu-
lating phonons have nontrivial angular momentum and
emergent macroscopic effects?

In this Letter, we study the angular momentum of
phonons in a magnetic crystal in a microscopic picture.
It is found that the Raman spin-phonon interaction induces
a nonzero phonon angular momentum, which is an odd
function of magnetization. In addition to a zero-point
energy, the phonon has a zero-point angular momentum
at zero temperature. Such zero-point phonon angular
momentum is offset by that of excited phonon modes such
that the total angular momentum of phonons vanishes in the
classical limit. Phonon angular momentum cannot be
ignored in total angular momentum especially in magnetic
materials with large magnetization and spin-phonon inter-
action. Revisiting the Einstein–de Haas effect, we find that
phonon angular momentum needs to be subtracted in
calculating the angular momentum of electrons. With this
correction, the spin and orbital angular momentum can be
precisely determined. In addition to the Einstein–de Haas
effect, nontrivial phonon angular momentum can be
applied to the study of spin-phonon interaction, thermal
Hall effect, and other topics related to phonons.
Angular momentum of phonons.—The lattice angular

momentum related to mechanical rotation only reflects the
rigid-body motion of the lattice. However, the angular
momentum of phonons has never been considered. In a
microscopic picture, we can define the angular momentum
of phonons as

Jph ¼
X
lα

ulα × u
:
lα: (1)

Here ulα is a displacement vector of the αth atom in the lth
unit cell, multiplied by square root of mass. Along z
direction, Jphz ¼ P

lαðuxlαu
: y
lα − uylαu

: x
lαÞ. One can present the

displacement in the second quantization form as

ul ¼
P

kεke
iðRl·k−ωktÞ

ffiffiffiffiffiffiffiffi
ℏ

2ωkN

q
ak þ H:c:, with k ¼ ðk; σÞ
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specifying a wave vector k and a branch σ, where ϵk is a
displacement polarization vector. Then the phonon angular
momentum can be written as [21]

Jphz ¼ ℏ
2

X
k;k0

ϵ†kMϵk0

� ffiffiffiffiffiffiffi
ωk

ωk0

r
þ

ffiffiffiffiffiffiffi
ωk0

ωk

r �
a†kak0δk;k0e

iðωk−ωk0 Þt

þ ℏ
2

X
k

ϵ†kMϵk: (2)

Here M ¼
�

0 −i
i 0

�
⊗ In×n, and n is the number of atoms

in one unit cell. In equilibrium, the angular momentum of
phonons reduces to [21]

Jphz ¼
X
σ;k

lzk;σ

�
fðωk;σÞ þ

1

2

�
; lzk;σ ¼ ðϵ†k;σMϵk;σÞℏ; (3)

where fðωkÞ ¼ 1=ðeℏωk=kBT − 1Þ is the Bose-Einstein dis-
tribution. In Eq. (3), we do a summation over all wave
vector points and all phonon branches (ω ≥ 0). Here, lzk;σ is
the phonon angular momentum of branch σ at wave vector
k, which is real and proportional to ℏ. At zero temperature,
the total phonon angular momentum is Jphz ðT ¼ 0Þ ¼P

σ;k
1
2
lzk;σ , which means that each mode of (k, σ) has a

zero-point angular momentum 1
2
lzk;σ ¼ ðℏ=2Þðϵ†k;σMϵk;σÞ in

addition to a zero-point energy of ℏωk;σ=2.
For an ionic crystal lattice in a uniform external magnetic

field, the Hamiltonian reads in a compact form
[18,19,22,23],

H ¼ 1
2
ðp − ~AuÞTðp − ~AuÞ þ 1

2
uTKu; (4)

where u is a column vector of displacements from lattice
equilibrium positions, multiplied by square root of mass; p
is a conjugate momentum vector, and K is a force constant
matrix. The cross term uT ~Ap can be interpreted as a Raman
spin-phonon interaction [24,25]. The superscript T stands
for the matrix transpose. ~A, an antisymmetric real matrix
[26], has a dimension of Nd × Nd where N is the number
of total sites and d is the dimension of lattice vibrations; in a
proper approximation it can be block diagonal with

elements Λα ¼
�

0 λα
−λα 0

�
with respect to the αth ionic

site, where we only consider two-dimensional (x and y
directions) motion of the lattice (d ¼ 2). Here λα has a
dimension of frequency, and is proportional to the spin-
phonon interaction and magnetization, which is assumed to
be proportional to magnetic field for a paramagnetic
material. The magnetic field is applied along z direction.
The polarization vector ϵ satisfies ½ð−iωþ AÞ2 þD�ϵ ¼ 0,
where DðkÞ ¼ −A2 þP

l0Kll0eiðRl0−RlÞ·k is the dynamic
matrix and A is block diagonal with the element of Λα, and

has a dimension of 2n × 2n where n is the number of sites
per unit cell.
In absence of spin-phonon interaction, the system

reduces to a trivial phonon system H ¼ 1
2
pTpþ 1

2
uTKu.

Solving the simple eigenvalue problem as DðkÞϵk;σ ¼
ω2
k;σϵk;σ with DTðkÞ ¼ D�ðkÞ ¼ Dð−kÞ, one can have

ω−k;σ ¼ ωk;σ; ϵ−k;σ ¼ ϵ�k;σ, then we obtain lz−k;σ ¼ −lzk;σ
and Jphz ¼ 0 [21]. Thus for a phonon system without a
spin-phonon interaction, the total angular momentum of
phonons is zero.
For a phonon system with a spin-phonon interaction,

ϵ−k;σ ¼ ϵ�k;−σ ≠ ϵ�k;σ, and then lz−k;σ ≠ −lzk;σ; thus, one can
get a nonzero phonon angular momentum, which is shown
in Fig. 1. We calculate phonon angular momentum for
lattices with the following parameters: the longitudinal
spring constant is KL ¼ 0.144 eV=ðuÅ2Þ and the trans-
verse one is KT ¼ KL=4; the unit cell lattice vectors are
(a,0), (0,a) for a square lattice and (a,0),(a=2,a3=2) for
other lattices with a ¼ 1 Å. We take λα ¼ λ for the model
calculation [27]. Figure 1(a) shows that honeycomb and
kagome lattices have larger phonon angular momenta than
those of triangle and square lattices, which means that
lattices with more sites per unit cell can have a larger
phonon angular momentum. We can understand this trend

FIG. 1 (color online). (a) The phonon angular momentum Jphz
of one unit cell as a function of λ at temperature T ¼ 0 K for
different lattice symmetries. (b) The contour plot of the phonon
angular momentum Jphz of one unit cell as a function of λ and
temperature T. (c) The phonon angular momentum Jphz of one
unit cell from different phonon bands as a function of temperature
T at λ ¼ 1 THz, where the arrow denotes the Debye temperature
of the model (TD ¼ 358 K). (d) The phonon angular momentum
Jphz of one unit cell from different phonon bands as a function of λ
at T ¼ 0 K. The phonon angular momenta in (b)–(d) are
calculated for a honeycomb lattice. All the phonon angular
momenta are in the unit of ℏ.
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by observing that optical bands are more important in
contributing to the phonon angular momentum than the
acoustic ones. In Figs. 1(c) and 1(d) we plot the phonon
angular momentum contributing from different bands in a
honeycomb lattice. It is shown that the phonon angular
momentum from acoustic bands almost vanishes at low
temperatures [see Fig. 1(c)] and if λ is not large [see
Fig. 1(d)]; thus, the optical bands dominate the contribution
to the total phonon angular momentum. With more sites per
unit cell more optical bands are present; thus, the phonon
angular momentum will be larger.
By using the relations ϵ�−k;σð−AÞ¼ ϵk;σðAÞ,ω−k;σð−AÞ ¼

ωk;σðAÞ, MT ¼ −M, we can obtain Jphz ð−λÞ ¼ −Jphz ðλÞ.
Since λ is proportional to magnetization, the total angular
momentum of phonon will change sign when magnetiza-
tion changes sign. As shown in Figs. 1(a), 1(b), and 1(d),
the total angular momentum of phonons per unit cell
increases as λ increases, but the increase rate will decrease.
Angular momentum in the classical limit.—At the high

temperature limit, from Eq. (3) we have [21]

Jphz ðT → ∞Þ ¼
X
σ>0;k

��
kBT
ℏωk;σ

þ ℏωk;σ

12kBT

�
lzk;σ

�
: (5)

It seems that the phonon angular momentum would be
linear with temperature at the high temperature limit.
However, the first term vanishes due to the fact ofP

σ>0;kðϵ†k;σMϵk;σ=ωk;σÞ ¼ 0 [21]. Therefore, at a high
temperature the total phonon angular momentum is propor-
tional to 1=T and tends to zero as

Jphz ðT → ∞Þ ¼
X
σ>0;k

ℏωk;σ

12kBT
lzk;σ → 0: (6)

The phonon angular momentum per unit cell changing with
temperature is shown in Figs. 1(b) and 1(c). Whatever a
magnetic field is applied, the phonon angular momentum
per unit cell decreases with increasing temperature and
tends to zero at the high temperature limit (T ≫ TD). With
increasing temperature more modes are exited, the angular
momentum of which has the direction opposite to that of
the zero-point angular momentum; at the high temperature
limit, the phonon angular momentum of all the excited
modes exactly cancels out the zero-point angular momen-
tum [

P
lzk;σfðωk;σ; T → ∞Þ ¼ −P

1
2
lzk;σ]. We can under-

stand the absent phonon angular momentum in the classical
limit as follows. At high temperatures, classical statistical
mechanics is applicable to calculate the phonon angular
momentum. Summation over quantum states becomes a
phase-space integral with respect to p and u. One can do a
change of variable to make the kinetic energy in the
Hamiltonian equation (4) into a usual form p2=2, thus
removing the effect of ~Au; for such a pure harmonic
system, the angular momentum of phonons is zero as
discussed above. Furthermore, the Bohr–van Leeuwen

theorem states that in classical mechanics the thermal
average of the magnetization is always zero [28], which
also makes the angular momentum of phonons vanish at the
classical limit. Therefore, the phonon angular momentum is
meaningful only in low-temperature quantum systems.
Revisit the Einstein–de Haas effect—The Einstein–de

Haas effect [1] showed a mechanical rotation of a freely
suspended body caused by the change in its magnetization.
In their experiment [1], Einstein and de Haas employed a
resonance method in which the magnetic field was periodic
and tuned to be the natural frequency of the rod and its
suspension, which provided measurements for the ratio
between the change in magnetization and the one in the
total angular momentum. Traditionally the total angular
momentum is assumed as Jtot ¼ Jlat þ Jspin þ Jorb; thus,
due to conservation of the angular momentum, one obtains
ΔJlat ¼ −ðΔJspin þ ΔJorbÞ, which is determined by the
mechanical rotation of the sample [7]. However, from a
microscopic point of view, the angular momentum of all
atoms in the sample can be written as

Jatom ¼
X
lα

ðRlα þ ulαÞ × ðR: lα þ u
:
lαÞ; (7)

where Rlα is the equilibrium position of the αth atom in the
lth unit cell, multiplied by square root of its mass. The
angular momentum of the lattice is

Jlat ¼
X
lα

Rlα × R
:

lα; (8)

which really reflects the mechanical rotation of rigid-body
motion of the sample. In equilibrium, the cross terms
related with u or u

:
are zero, then Jatom ¼ Jlat þ Jph. Thus

the total angular momentum should be

Jtot ¼ Jlat þ Jph þ Jspin þ Jorb: (9)

The global conservation of the angular momentum does
not explain how the angular momentum is actually trans-
ferred from individual electrons or atoms to the whole
rigid body; the Raman type spin-phonon interaction can be
ubiquitous and plays an essential role. According to the
discussion in the above section, we know that in the
presence of the spin-phonon interaction, the phonon band
structure is nontrivial and gives the nonzero angular
momentum Jph. Based on conservation of the total angular
momentum, we obtain

ΔJspin þ ΔJorb ¼ −ΔJlat − ΔJph: (10)

Therefore, to obtain the change of the angular momentum
of electrons, one needs to subtract the contribution of the
phonon from the opposite change of the lattice angular
momentum. On the other hand, one can measure the total
magnetization change as
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ΔM ¼ ΔMspin þ ΔMorb: (11)

Combining Eq. (10), Eq. (11) together with the facts of
ΔMorb ¼ ðe=2mÞΔJorb and ΔMspin ¼ ðe=mÞΔJspin, one
can easily determine ΔM spin and ΔMorb.
The phonon can make a significant contribution to total

angular momentum, while the magnitude of the phonon
angular momentum depends on the value of λ. The
parameter λ can be obtained from phonon dispersion
relation since our calculation shows that in the presence
of spin-phonon interaction degenerate phonon modes split
at Γ point with a gap of 2λ. By means of Raman scattering
experiments, literatures [29,30] show that the phonon
splitting ranges up to about 26 cm−1 in paramagnetic
CeF3 at T ¼ 1.9 K and B ¼ 6 T; thus, λ can be about
0.39 THz and the phonon angular momentum per unit cell
is about 0.02 ℏ. One also can estimate the parameter λ from
the phonon Hall effect. For a paramagnetic terbium gallium
garnet Tb3Ga5O12, the parameter λ is estimated as λ ¼
0.1 cm−1 ≃ 3 GHz at B ¼ 1 T and T ¼ 5.45 K [18]; thus,
in such material the phonon angular momentum per unit
cell is about 1.6 × 10−4ℏ, which is relatively small.
However, one can observe a much larger phonon angular
momentum when magnetization is saturated in this para-
magnetic material since the parameter λ is proportional to
magnetization. In the phonon Hall effect experiment
[16,17], the paramagnetic insulator was chosen to manifest
the phonon contribution in the thermal transport where the
contribution from electron and magnon can be neglected.
However, the spin-phonon interaction is widely present in
various magnetic materials [31–34]. Ferromagnetic materi-
als have very large magnetization; thus, one can expect a
large phonon angular momentum. One also can observe
evident phonon angular momentum in materials with
strong spin-phonon interaction by using Raman spectros-
copy, such as La2NiMnO6 [35], Sr2CoO4 [36] and cupric
oxide [37].
Thus for materials with strong spin-phonon interaction

together with large magnetization, the zero-point angular
momentum of phonons can be significant. According to
previous studies, in some ferromagnetic materials the
calculated orbital magnetic moment is only a few percent
of the total magnetic moment, that is, the orbital angular
momentum is also around a few percent of ℏ [8]; thus, the
phonon angular momentum cannot be ignored. With
improvement of experimental technique in past decades,
the accuracy of the measurement has been much enhanced;
thus, the phonon angular momentum should be measurable.
Possible experiment to separate the phonon angular

momentum.—One can do experiments on a ferromagnetic
insulator with saturation magnetization, where electron
transport can be ignored. Due to the properties of the
phonon angular momentum—it decreases with increasing
temperature and vanishes in the classical limit—one can
measure the change of the lattice angular momentum at low

and high temperatures to separate the phonon angular
momentum from the others. Here the temperature scale
should be the Debye temperature which divides the
quantum and classical regions. On the other hand, in order
to avoid the involvement of magnons, we need to do
experiments at temperatures that are low compared to the
Curie temperature. This demands that the Curie temper-
ature be much higher than the Debye temperature. Thus, the
angular momentum of magnons almost keeps constant,
while that of phonons changes dramatically with changing
temperature. Fortunately, this can be satisfied by many
ferromagnetic materials where their Curie temperature is
around 1000 K while their Debye temperatures is less than
500 K [38].
In addition to its application to the measurement of

gyromagnetic ratio, the nontrivial phonon angular momen-
tum provides us a possible efficient route to study spin-
phonon interaction in magnetic materials. On the other
hand, how to separate the contribution from phonons and
magnons to the thermal Hall effect in ferromagnetic
materials is an open problem. The phonon angular momen-
tum, however, can give a way to obtain the phonon
contribution.
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